Pesquisa

segunda-feira, 17 de julho de 2017

Utilizando uma circunferência para construir uma hipérbole

Vamos fazer um estudo sobre a hipérbole que pode ser obtida a partida da construção da postagem no link http://www.benditamatematica.com/2017/07/associando-pontos-da-circunferencia-uma.html.

A definição mais usual para hipérbole é
Sejam $F_1$ e $F_2$ dois pontos distintos do planos e $2c$ é a distância entre eles. A hipérbole é o lugar geométrico do ponto $P$ tal que a diferença das distância entre $P$ e cada um dos focos é $2a$, com $0 < a < c$ 


Na Construção 1, vamos considerar que a circunferência $d$ tem raio $p$, ou seja, $\overline{CP_1}=p$, a distância entre $P_1$ e $P$ será $m$, como $P$ é equidistante de $P_1$ e $F$, então, $\overline{P_1P}=\overline{PF}=m$, ver Figura 1.

Figura 1
Assim, temos:


$$\left\{\begin{array}{l}

\overline{CP}=p+m \\

\overline{PF}=m

\end{array}\right.\Rightarrow \left|\overline{CP}-\overline{PF}\right|=\left|p+m-m\right|=p$$

Deste modo, verificamos que quando $F$ é externo a $d$, o lugar geométrico de $P$ é uma hipérbole com foco $C$ e $F$. Na Figura 2, os pontos $A_1$ e $A_2$ são os vértices da parábola, assim $\overline{A_1A_2}$ é o eixo focal, $A_1$ é associado ao ponto $A'_1$ e $A_2$ é associado ao ponto $A'_2$. Sendo $p$ o raio de $d$ e $n$ a distância entre $A_2$ e $F$, vamos determinar a medida $2a$ do eixo focal.
Figura 2
A distância entre $A_1$ e $F$ é
$$d(A'_1,F)=2p+2n$$
Como $A_1$ é ponto médio de $A'_1$ e $F$, então
$$d(A_1,F)=\frac{d(A'_1,F)}{2}=\frac{2p+2n}{2}=p+n$$
Veremos que a distância entre os vértices da hipérbole é igual ao raio da circunferência $d$
$$d(A_1,A_2)=d(A_1,F)-d(A_2,F)=p+n-n=p$$
Como $A_2$ é o ponto médio entre $A'_2$ e $F$, então, a distância, 2c, entre os focos $C$ e $F$ é
$$d(C,F)=d(C,A'_2)+d(A'_2,F)=p+2n$$

Na Figura 3, $M$ é o centro da hipérbole e $\overline{B_1B_2}$ é o eixo não focal. Então, $\overline{MA_2}=\dfrac{p}{2}$ e $\overline{B_1A_2}=\dfrac{p+2n}{2}$. Vamos determina a medida $2b$ do eixo não focal utilizando a relação
$$c^2=a^2+b^2\Rightarrow\left( \dfrac{p+2n}{2} \right)^2=\left( \dfrac{p}{2} \right)^2+b^2 \Rightarrow b=\dfrac{\sqrt{n\left( 2p+n \right)}}{2}\Rightarrow \overline{B_1B_2}=2b=\sqrt{n\left( 2p+n \right)}$$
Figura 3
Sejam as reta $t_1$ e $t_2$ tangentes à circunferência $d$ nos pontos $P_1$ e $P_2$, respectivamente, e passam por $F$. Neste caso, não há circunferência que tangencie $d$ em $P_1$ ou $P_2$ e passe por $F$. Desta forma, vamos mostrar que as mediatrizes de $\overline{P_1F}$ e $\overline{P_2F}$ são as assíntotas da parábola.

Sabemos que as assíntotas têm coeficientes angulares $\dfrac{b}{a}$ e $-\dfrac{b}{a}$ e passa pelo centro da hipérbole. Assim, considere a Figura 4.
Figura 4
A circunferência $e$ tem centro em $M$ e raio $c=\overline{MF}=\dfrac{p+2n}{2}$, $P_1$ pertence a interseção de $d$ e $e$ e $t_1=\overline{P_1F}$. 

O triângulo $\triangle CP_1F$ é retângulo em $P_1$, pois $C\widehat{P_1}F=90^\circ$ porque é o ângulo do arco capaz da diagonal  de $e$. Como $\overline{CP_1}=2a$ e $\overline{CF}=2c$, então $\overline{P_1F}=2b=\sqrt{n\left( 20+n \right)}$, por causa da relação $c^2=a^2+b^2$. Então, temos $$tg \left(C\widehat{P_1}F\right)=\frac{2b}{2a}=\frac{b}{a}=\frac{2\sqrt{n\left( 20+n \right)}}{p}$$
A mediatriz $s$ de $P_1$ e $F$ é perpendicular a $\overline{P_1F}$, então, $s // \overline{CP_1}$ e, como $M$ é equidistante de $P_1$ e $F$, então $s$ passa por $M$, logo $s$ é assíntota da hipérbole. De forma análoga, podemos mostrar que a mediatriz entre entre $F$ e $P_2$, o outro ponto de interseção entre $d$ e $e$, é a outra assíntota da parábola, ver Figura 5.
Figura 5

domingo, 16 de julho de 2017

Associando pontos da circunferência a uma elipse ou hipérbole

Na Revista do Professor de Matemática Nº 66 tem um artigo com o título Obtendo as cônicas com dobraduras que apresenta construções, que podem ser feitas no software de Geometria Dinâmica. Segue os passos da construção que fiz no Geogebra, os comandos apresentados em cada um dos passos deverão ser colocados no Campo Entrada, no Geogebra.

  1. Coloque três pontos distintos $C,F$ e $R$;
  2. Insira o comando "d=Círculo(C, R)", criando assim a circunferência $d$ com centro em $C$ e raio $\overline{CR}$;
  3. Coloque o ponto $P_1$ na circunferência $d$ utilizando o comando "P_1=Ponto(d)";
  4. Trace a reta $r=\overline{CP_1}$ com o comando "r=reta(C,P_1)";
  5. Trace a mediatriz $s$ dos pontos $P-1$ e $F$ com o comando "s=Mediatriz(P_1, F)";
  6. Marque o ponto $P\in r\cap s$ utilizando o comando "P=Interseção(r, s)".
  7. Identifique o lugar geométrico $c$ do ponto $P$ através do comando "c=LugarGeométrico(P, P_1)".
A seguir, apresentamos a construção feita no Geogebra


Na Construção 1, mova o ponto $C$ para alterar a posição da circunferência $d$, movendo o ponto $R$ alterará o raio de $d$, movendo o ponto $F$ alterá a cônica e movendo o ponto $P_1$, moverá o ponto $P$.

Observe que se o ponto $F$ é externo à circunferência $d$, então, o lugar geométrico de $P$ sugere ser uma hipérbole com focos $C$ e $F$; e se $F$ é interno à $d$ e distinto de $C$, a construção sugere que o lugar geométrico de $P$ é uma elipse com focos $C$ e $F$.

quinta-feira, 29 de junho de 2017

Pontos equidistantes do centro e de algum lado de um quadrado

Nesta postagem, vamos determinar o conjunto de pontos que estão a uma mesma distância do centro e de algum lado de um quadrado.

CONSTRUÇÃO 1


Vamos considerar um triângulo qualquer com vértices $A,B$ e $C$. Vamos determinar os conjunto de pontos que são equidistantes do ponto $C$ e do lado $\overline{AB}$.

Sendo $s$ a reta determinada pelos ponto $A$ e $B$, os pontos que estão a uma mesma distância do ponto $C$ e da reta $s$ são pontos pertencentes a parábola $\phi$ que tem foco no ponto $C$ e reta diretriz $s$.  Para limitar os pontos equidistantes de $C$ e do segmento $\overline{AB}$, é só limitar a parábola nos pontos $A'$ e $B'$ que são as interseções entre as perpendiculares de $s$, nos pontos $A$ e $B$, respectivamente, e a parábola $\phi$.

CONSTRUÇÃO 2
Vamos determinar o conjunto de pontos que estão a uma mesma distância do centro $C$ e de algum lado do quadrado $PQRS$.
Traçando as diagonais, dividiremos o quadrado $PQRS$ em quatro triângulos congruentes, $\triangle PCS, \triangle PCQ, \triangle QCR$ e $\triangle RCS$, ver figura a seguir.
Dessa forma, o ponto $C$ é vértice de todos os triângulos que compõe o quadrado $PQRS$ e, cada triângulo, possui um dos lados do quadrado. Vamos observar apenas $\triangle PCS$. Os pontos internos estão mais próximos do lado $\overline{PS}$ do que qualquer um dos outros três lados do quadrado ao contrário dos pontos externos ao triângulo, que estão mais próximos de algum dos outros três lados do quadrado do que do lado $\overline{PS}$. Por esta razão e pela Construção 1, os pontos equidistantes de $\overline{PS}$ e de $C$ são os pontos da parábola que tem foco em $C$ e diretriz $\overline{PS}$ e que são internos a $\triangle PCS$. 
De forma análoga, podemos encontrar os outros pontos que estão mais próximos de algum dos outros três lados do quadrado e de $C$.