Pesquisa

terça-feira, 28 de fevereiro de 2017

quinta-feira, 9 de fevereiro de 2017

GEOMETRIA HIPERBÓLICA: Mediatriz e H-ponto médio no Disco de Poincaré

Nesta publicação veremos a definição de mediatriz no plano $\mathbb{H}$ e h-ponto médio de um segmento de h-reta.

Para uma boa compreensão das demonstrações, é importante que o leitor tenha conhecimento sobre a reflexão em torno de uma h-reta, para isso, sugerimos a leitura das publicações Isometria no Disco de Poincaré: Reflexão em torno de uma h-reta e H-eixo de simetria no Disco de Poincaré.

Definição 1 - Seja $s$ um segmento de h-reta com extremos nos h-pontos $A$ e $B$. Dizemos que a h-reta $m$ é a mediatriz de $s$, ou de $A$ e $B$, se para todo h-ponto $P\in m$ temos $d_h(A,P)=d_h(B,P)$

 Proposição 1 - Os h-pontos $A$ e $A'$ são simétricos em relação à h-reta $s$ se, e somente se, $s$ é mediatriz de $A$ e $A'$.

DEMONSTRAÇÃO

$\left.\Rightarrow\right)$ Sendo $A$ e $A'$ simétricos em relação à $s$ e sendo $P\in s$ um h-ponto arbitrário, pela Definição 2 - Isometria no Disco de Poincaré: Reflexão em torno de uma h-reta, temos que $\mathfrak{R}_s(P)=P$. Assim, conforme a Proposição 2 - Isometria no Disco de Poincaré: Reflexão em torno de uma h-reta, temos $d_h(A,P)=d_h(A',P)$, portanto, pela arbitrariedade da escolha do h-ponto $P$,  $s$ é a mediatriz de $A$ e $A'$.
$\left.\Leftarrow\right)$  Sendo $s$ a mediatriz de $A$ e $A'$ e $P$ é um h-ponto qualquer de $s$, pelo Teorema 1 - H-eixo de simetria no Disco de Poincaré, existe uma única h-reta que reflete $A$ em $A'$. Como $d_h(A,P)=d_h(A',P)$, então, $P$ é um h-ponto do h-eixo de simetria, como $P$ é um h-ponto arbitrário de $s$, então, todos os h-pontos de $s$ pertencem ao h-eixo de simetria, isso implica que $s$ é o h-eixo de simetria que reflete $A$ em $A'$.
$\square$
Como consequência da Proposição 1, temos a unicidade da mediatriz

Corolário 1 - O segmento com extremos em $A$ e $B$ tem uma única mediatriz

DEMONSTRAÇÃO

Pela Proposição 1, a mediatriz de $A$ e $B$ também é o h-eixo de simetria de $A$ e $B$. Conforme o Teorema 1 - H-eixo de simetria no Disco de Poincaré, esta h-reta é única.
$\square$

Proposição 2- Sendo $A,B,P\in\mathbb{H}$ e $m$ a mediatriz de $A$ e $B$, se $d_h(A,P)=d_h(B,P)$, então $P\in m$.

DEMONSTRAÇÃO

Suponha que $P\notin m$, sem perda de generalização, vamos considerar que $P\notin\overline{AB}_h$, tomando $\overline{AB}_h$ como h-eixo de simetria, então, existe um único h-ponto $P'$ simétrico a $P$ em relação a $\overline{AB}_h$ e $d_h(A,P')=d_h(B,P')$. Desta forma, qualquer h-ponto $Q\in\overline{PP'}_h$ será equidistante de $A$ e $B$, ou seja, $d_h(A,Q)=d_h(B,Q)$ (neste blog não há a demonstração desta igualdade, mas ela pode ser facilmente feita). Pela arbitrariedade na escolha do h-ponto $Q$, então a h-reta $\overline{PP'}_h$ é mediatriz de $A$ e $B$, que é um absurdo, pois, pelo Colorário 1, a mediatriz é unica. Desta forma, todo h-ponto $P$ equidistante de $A$ e $B$ pertence a mediatriz destes h-pontos.
$\square$

Definição 2 - Considere os h-pontos $A,B$ e $M$. e a h-reta $r=\overline{AB}_h$. Dizemos que $M$ é o h-ponto médio de $A$ e $B$ se $M\in r$ e $d_h(A,M)=d_h(B,M)$.

Teorema 1 - A mediatriz de $A$ e $B$ é a h-reta perpendicular a $\overline{AB}_h$ e passa pelo h-ponto médio de $A$ e $B$.

DEMONSTRAÇÃO

Sendo $M$ o h-ponto médio e $m$ a mediatriz de $A$ e $B$, de imediato, verificamos que $M\in m$. Como $m$ também é o h-eixo de simetria de $A$ e $B$, então $m\perp\overline{AB}_h$.
$\square$