Pesquisa

sábado, 28 de janeiro de 2017

GEOMETRIA HIPERBÓLICA: H-eixo de simetria no Disco de Poincaré

Esta publicação visa preencher lacunas que ficaram da publicação Isometria no Disco de Poincaré: Reflexão em torno de uma h-reta, por esta razão, sugiro que a veja antes de continuar com a leitura desta publicação.


Teorema 1 - Sejam $A$ e $B$ h-pontos distintos, existe uma única h-reta $s$ tal que $\mathfrak{R}_s(A)=A'$.

DEMONSTRAÇÃO

Devemos considerar quatro situações, no plano $\mathbb{E}_\infty$: i) $A$ e $B$ são equidistantes de $O$; ii) $A,B$ e $O$ são pontos colineares e não-equidistantes; iii) $A,B$ e $O$ são ponto não-colineares e $A$ e $B$ não são equidistantes de $O$; e iv) $B=O$

A seguir está uma construção feita no Geogebra, onde é possível observar as construções que comprovam que a h-reta $s$ existe e é única.

Construção 1: Determinando o h-eixo de simetria conhecendo dois pontos simétricos

terça-feira, 24 de janeiro de 2017

GEOMETRIA HIPERBÓLICA: Isometria no Disco de Poincaré - Reflexão em torno de uma h-reta


Nesta postagem conheceremos uma transformação no plano hiperbólico, reflexão em torno de uma h-reta, e provaremos que esta transformação é uma isometria.

Para o bom entendimento desta publicação, é importante que tenha conhecimento sobre o modelo de Disco proposto por Poincaré, para isso sugerismo a leitura da publicação Disco de Poincaré: ponto, reta e plano. Desta forma, o plano hiperbólico $\mathbb{H}$ será a região delimitada por uma circunferência $\alpha$, com centro num ponto $O$ e raio não-nulo. Também sugerimos a leitura da publicação Métrica no Disco de Poincaré para melhor conhecimento sobre a forma de medir a distância entre dois h-pontos no Disco de Poincaré.

Para boa compreensão das demonstrações, é necessário que o leitor tenha conhecimento sobre inversão na circunferência, caso não tenha, sugerimos a leitura das publicações (nesta ordem) Inversão na circunferência, Inversão de ponto interno à circunferência $\alpha$Inversão de ponto externo a circunferência$\alpha$Inversão de um ponto qualquer do plano euclidiano em relação a uma circunferênciaCircunferências ortogonais, Inversão de reta em relação à circunferênciaInversão de circunferência em relação a outra circunferênciaInversão de ângulos formados por retas e circunferências e Centro do inverso de uma circunferência que não passa pelo centro de inversão.

Para saber como construir h-retas, leia a publicação Construção de h-reta e H-retas perpendiculares.

jjjjjjjjjjjjjjjjjjj

Vamos definir isometria no plano $\mathbb{H}$, a definição a seguir encontrei no livro Isometria de Elon Lages Lima que foi adaptada para o plano hiperbólico.

Definição 1 - Seja uma aplicação $T:\mathbb{H}\rightarrow\mathbb{H}$, diremos que $T$ é uma isometria se:
  1. $T$ é uma função biunívoca;
  2. Para todo $A,B\in\mathbb{H}$ temos que $d_h(A,B)=d_h(T(A),T(B))$;
  3. $T$ é uma aplicação conforme.
Vamos definir reflexão em torno de uma h-reta, considerando que no Disco de Poincaré foram definidas dois tipos de h-retas (clique aqui para ver os tipos de h-retas).

Definição 2 - Chamaremos de reflexão em torno de uma h-reta $r$ a função $\mathfrak{R}:\mathbb{H}\rightarrow\mathbb{H}$ definida como: para todo $A\in\mathbb{H}$, o reflexo de $A$ em relação a h-reta $r$ será o ponto $A'$, denotaremos por $\mathfrak{R}_r(A)=A'$, considerando a regra:
  1. se $O\notin r$, então, no plano $\mathbb{E}_\infty$, $A$ é o inverso de $A'$ em relação à circunferência que gera $r$, ver Figura 1;
  2. se $O\in r$, então, no plano $\mathbb{E}_\infty$, $A$ é reflexo de $A'$ em relação à reta que gera $r$, ver Figura 2.
Figura 1: Reflexão do $A$ em relação à
h-reta $r$ que não passa por $O$
Figura 2: Reflexão do $A$ em relação à
h-reta $r$ que passa por $O$

Diremos que $A$ e $A'$ são simétricos em relação à $r$ e $r$ será chamada de h-eixo de simetria.

Lema 1 - A reflexão em torno de uma h-reta transforma h-reta em h-reta.

DEMONSTRAÇÃO
Sejam $r$ e $s$ h-retas, sendo a primeira um h-eixo de simetria.

Se $O\in r$, então, a reflexão em torno da h-reta $r$ é igual à reflexão em torno da reta que gera $r$, denominada $\theta_r$. No plano $\mathbb{E}_\infty$, a reflexão em torno de uma reta é uma isometria, quer dizer que satisfaz condições da Definição 1 (função biunívoca e conserva distância e ângulo), considerando que a métrica do plano euclidiano, além disso, a reflexão em torno de uma reta transforma retas em retas e circunferências em circunferência. Como $\theta_r$ passa no ponto $O$, então, divide $\alpha$ em dois semicírculos, um simétrico ao outro em relação à $\theta_r$.


Figura 3: Reta $\theta_r$ divide $\alpha$ em dois semicírculos, $\alpha_1$ e $\alpha_2$, que são simétricos em relação a $\theta_r$


Se $O\in s$, então, $s$ é gerada por uma reta, denominaremos de $\theta_s$. Assim, o simétrico de $\theta_s$, em $\mathbb{E}_\infty$ é uma reta, $\theta_{s'}$, que também passa por $O$, então, o simétrico de $s$, $s'$, será um diâmetro de $\alpha$. Portanto, $s'$ é uma h-reta.
Figura 4: Reflexão da h-reta $s$ em torno da h-reta $r$ onde $O\in r,s$

Se $O\notin s$, então $s$ é gerada por uma circunferência, denominada $\beta_s$, ortogonal a $\alpha$. O simétrico de $\beta_s$ é outra circunferência, $\beta_{s'}$, também ortogonal a $\alpha$, neste caso, no plano $\mathbb{E}_\infty$, o simétrico do arco $s$, $s'$, é um arco de circunferência ortogonal a $\alpha$. Portanto, no plano $\mathbb{H}$, $s'$ é uma h-reta, ver Figura 5.
Figura 5: Reflexão da h-reta $s$ em torno da h-reta $r$ onde $O\in r$ e $O\notin s$ 
Vamos considerar que $O\notin r$, então, $r$ é uma h-reta gerada por um circunferência, que denominaremos de $\beta_r$, ortogonal a $\alpha$, ver Figura 6. Assim, $\beta_r$ divide o círculo $\alpha$ em duas regiões, uma inversa a outra em relação à $\beta_r$.
Figura 6: Circunferência $\beta_r$ divide $\alpha$ em duas regiões, $\alpha_a$ e $\alpha_b$, uma inversa a outra em relação a $\beta_r$
Sendo $s$ uma h-reta que passa por $O$, gerada pela reta $\theta_s$, e seja $O_r$ o centro da circunferência $\beta_r$, ver Figura 7. Se $\theta_s$ passa por $O_r$, então, o inverso de $\theta_s$ em relação a $\beta_r$ é a própria reta $\theta_s$ (ver Inversão de reta em relação à circunferência), veremos que o simétrico da h-reta $s$ em relação ao h-eixo simétrico $r$ é a própria h-reta $s$, ou seja, $\mathfrak{R}_r(s)=s$.

Figura 7: Reflexão de $s$ em torno de $r$ é a própria h-reta $s$

Se $O_r\notin\theta_s$, ver Figura 8, então, o inverso da reta $\theta_s$ em relação à circunferência $\beta_r$ será uma circunferência (ver Inversão de circunferência em relação a outra circunferência), denominada $\theta_{s'}$, que passa por $O_r$ e é ortogonal à circunferência $\alpha$ (ver Lema 2 - Circunferências ortogonais e Inversão de ângulos formados por retas e circunferências). Assim, o simétrico da h-reta $s$ em relação ao h-eixo de simétria $r$ é uma h-reta $s'$

Figura 8: $\mathfrak{R}_r(s)=s'$
Como a inversão é uma aplicação biunívoca, então a reflexão da h-reta $s'$, gerada pela circunferência $\theta_{s'}$ que passa por $O_r$, em torno da h-reta $r$ é a h-reta $s$ que passa por $O$.

Seja $\beta_s$ uma circunferência que não passa por $O_r$ e gera a h-reta $s$. O inverso da $\beta_s$ em relação a $\beta_r$ é outra circunferência, $\beta_{s'}$, que não passa por $O_r$ e é ortogonal a $\alpha$, ver Figura 9. Assim, a reflexão da h-reta $s$ em torno da h-reta $r$ será outra h-reta, $s'$, que não passa por $O$.

Figura 9: Reflexão da h-reta $s$ que não passa por $O$ gera pela circunferência $\beta_s$ que não passa por $O_r$
$\square$

Desta forma, mostramos que a reflexão em torno de uma h-reta transforma h-reta em h-reta. A seguir, veremos as proposições 1 e 2 que garantem que a reflexão em torno de uma h-reta satisfazem a Definição 1(a) e Definição 1(b), respectivamente.





Proposição 1 - A reflexão em torno de uma h-reta é uma função biunívoca.

DEMONSTRAÇÃO
Considerando o plano $\mathbb{E}_\infty$, tanto a inversão em relação à circunferência quanto a reflexão em torno de uma reta são aplicações biunívocas, por esta razão, a reflexão em torno de uma h-reta também é uma aplicação biunívoca.
$\square$

Proposição 2 - Sejam $A,A',B,B'\in\mathbb{H}$ e $r$ uma h-reta tais que $A'=\mathfrak{R}_r(A)$ e $B'=\mathfrak{R}_r(B)$. Então, $d_h(A,B)=d_h(A',B')$.

DEMONSTRAÇÃO

Inicialmente, se considerarmos que $A,B\in r$, para quaisquer das situações da Definição 2, teremos $A'=A$ e $B'=B$, desta forma,  $d_h(A,B)=d_h(A',B')$.  Assim, vamos considerar que ou $A\notin r$ ou $B\notin r$.

Sendo $O\in r$, ver a Figura 10, $Z_1$ e $Z_2$ são pontos ideais da h-reta determinada por $A$ e $B$, $\overline{AB}_h$, e $Z_3$ e $Z_4$ são pontos ideais da h-reta determinada por $A'$ e $B'$, $\overline{AB}_h$. Assim, teremos


$$\begin{equation}\label{equ1}


\left\{\begin{matrix}


d_h(A,B)=\left|\ln\dfrac{\overline{AZ_1}\cdot\overline{BZ_2}}{\overline{AZ_2}\cdot\overline{BZ_1}}\right|\\ \\


d_h(A',B')=\left|\ln\dfrac{\overline{A'Z_4}\cdot\overline{B'Z_3}}{\overline{A'Z_3}\cdot\overline{B'Z_4}}\right|


\end{matrix}\right.


\end{equation}$$

Como $A'$ e $B'$ são simétricos, respectivamente, a $A$ e a $B$, então a h-reta $\overline{A'B'}_h$ é simétrica à $\overline{AB}_h$, então, os pontos ideais $Z_1$ e $Z_2$ são simétricos, respectivamente, aos pontos ideais $Z_4$ e $Z_3$, assim, no plano $\mathbb{E}_\infty$, $\overline{AZ_1}\cong\overline{A'Z_4},\overline{AZ_2}\cong\overline{A'Z_3},\overline{BZ_1}\cong\overline{B'Z_4},\overline{BZ_2}\cong\overline{B'Z_3}$, assim:

$$\begin{equation}\label{equ2}


\dfrac{\overline{AZ_1}\cdot\overline{BZ_2}}{\overline{AZ_2}\cdot\overline{BZ_1}}=\dfrac{\overline{A'Z_4}\cdot\overline{B'Z_3}}{\overline{A'Z_3}\cdot\overline{B'Z_4}}\Rightarrow \ln\dfrac{\overline{AZ_1}\cdot\overline{BZ_2}}{\overline{AZ_2}\cdot\overline{BZ_1}}=\ln\dfrac{\overline{A'Z_4}\cdot\overline{B'Z_3}}{\overline{A'Z_3}\cdot\overline{B'Z_4}}\Rightarrow d_h(A,B)=d_h(A',B')


\end{equation}$$
Essa demonstração também vale para quando $O\in\overline{AB}_h$.
Figura 10: $A'=\mathfrak{R}_r(A)$ e $B'=\mathfrak{R}_r(B)$ e $d_h(A,B)=d_h(A',B')$
Se $O\notin r$, ver Figura 11, a circunferência $\beta_r$ gera a h-reta $r$; $Z_1$ e $Z_2$ são pontos ideais da h-reta $\overline{AB}_h$, determinada pelos h-pontos $A$ e $B$. Os h-pontos $A'$ e $B'$ que são simétricos, respectivamente, a $A$ e a $B$, determinam a h-reta $\overline{A'B'}_h$ que tem pontos ideais $Z'_1$ e $Z'_2$. Assim, como, no plano $\mathbb{H}$, dois h-pontos determinam uma única h-reta e sendo $A'=\mathfrak{R}_r(A)$ e $B'=\mathfrak{R}_r(B)$, temos que $\overline{A'B'}_h$  e $\overline{AB}_h$ são simétricos em relação a h-reta $r$, então, $Z'_1$ e $Z'_2$ são simétricos, respectivamente, a $Z_1$ e $Z_2$ em relação a $r$. 

Figura 11: O h-eixo de simetria não passa pelo h-ponto $O$
Considerando o plano $\mathbb{E}_\infty$ e tomando $\beta_r$ como circunferência de inversão, os pontos $A$ e $Z_2$ são inversos, respectivamente, aos pontos $A'$ e $Z'_2$, assim, da Definição 1 - Inversão na circunferência (definição de ponto inverso), temos


$$\begin{equation}\label{equ3}


\overline{O_rA}\cdot\overline{O_rA'}=\overline{O_rZ_2}\cdot\overline{O_rZ'_2}\Rightarrow\dfrac{\overline{O_rA}}{\overline{O_rZ_2}}=\dfrac{\overline{O_rZ'_2}}{\overline{O_rA'}}


\end{equation}$$
Então, o triângulo $\triangle_{AO_rZ_2}$ é semelhante ao triângulo $\triangle_{Z'_2O_rA'}$. De forma análoga, podemos demonstrar que o triângulo $\triangle_{AO_rZ_1}$ é semelhante ao triângulo $\triangle_{Z'_1O_rA'}$, ver Figura 12.
Figura 12: $\left(\triangle_{AO_rZ_2},\triangle_{Z'_2O_rA'}\right)$ e  $\left(\triangle_{AO_rZ_1},\triangle_{Z'_1O_rA'}\right)$ são pares de triângulos semelhantes
Da relação entre os triângulos $\triangle_{AO_rZ_2}$ e $\triangle_{Z'_2O_rA'}$, temos
$$\begin{equation}\label{eq2}\dfrac{\overline{AZ_2}}{\overline{A'Z'_2}}=\dfrac{\overline{O_rA}}{\overline{O_rZ'_2}}\Rightarrow\overline{O_rA}=\dfrac{\overline{AZ_2}\cdot\overline{O_rZ'_2}}{\overline{A'Z'_2}}\end{equation}$$

Da relação entre os triângulos $\triangle_{AO_rZ_1}$ e $\triangle_{Z'_1O_rA'}$, temos
$$\begin{equation}\label{eq1}\dfrac{\overline{AZ_1}}{\overline{A'Z'_1}}=\dfrac{\overline{O_rA}}{\overline{O_rZ'_1}}\Rightarrow\overline{O_rA}=\dfrac{\overline{AZ_1}\cdot\overline{O_rZ'_1}}{\overline{A'Z'_1}}\end{equation}$$

Da relação entre $\eqref{eq2}$ e $\eqref{eq1}$ temos
$$\begin{equation}\label{eq3}\dfrac{\overline{AZ_2}\cdot\overline{O_rZ'_2}}{\overline{A'Z'_2}}=\dfrac{\overline{AZ_1}\cdot\overline{O_rZ'_1}}{\overline{A'Z'_1}}\Rightarrow\dfrac{\overline{AZ_2}\cdot\overline{A'Z'_1}}{\overline{AZ_1}\cdot\overline{A'Z'_2}}=\dfrac{\overline{O_rZ'_1}}{\overline{O_rZ'_2}}\end{equation}$$

Analogamente, podemos mostrar que o triângulo $\triangle_{BO_rZ_2}$ é semelhante ao triângulo $\triangle_{Z'_2O_rB'}$ e o triângulo $\triangle_{AO_rZ_1}$ é semelhante ao triângulo $\triangle_{Z'_1O_rA'}$, ver Figura 13.

Figura 13: $\left(\triangle_{BO_rZ_2},\triangle_{Z'_2O_rB'}\right)$ e  $\left(\triangle_{BO_rZ_1},\triangle_{Z'_1O_rB'}\right)$ são pares de triângulos semelhantes
Assim, podemos encontrar
$$\begin{equation}\label{eq4}\dfrac{\overline{BZ_2}\cdot\overline{B'Z'_1}}{\overline{BZ_1}\cdot\overline{B'Z'_2}}=\dfrac{\overline{O_rZ'_1}}{\overline{O_rZ'_2}}\end{equation}$$

De $\eqref{eq3} e $\eqref{eq4}$ teremos

$$\dfrac{\overline{AZ_2}\cdot\overline{A'Z'_1}}{\overline{AZ_1}\cdot\overline{A'Z'_2}}=\dfrac{\overline{BZ_2}\cdot\overline{B'Z'_1}}{\overline{BZ_1}\cdot\overline{B'Z'_2}}\Rightarrow\dfrac{\overline{A'Z'_1}\cdot\overline{B'Z'_2}}{\overline{A'Z'_2}\cdot\overline{B'Z'_1}}=\dfrac{\overline{AZ_1}\cdot\overline{BZ_2}}{\overline{AZ_2}\cdot\overline{BZ_1}}\Rightarrow\left|\ln\dfrac{\overline{A'Z'_1}\cdot\overline{B'Z'_2}}{\overline{A'Z'_2}\cdot\overline{B'Z'_1}}\right|=\left|\ln\dfrac{\overline{AZ_1}\cdot\overline{BZ_2}}{\overline{AZ_2}\cdot\overline{BZ_1}}\right|\Rightarrow d_h(A',B')=d_h(A,B)$$

Suponha que a h-reta $\overline{AB}_h$, com pontos ideais $Z_1$ e $Z_2$, passa pelo h-ponto $O$ e, no plano $\mathbb{E}_\infty$, a reta $\overline{AB}$ passa pelo ponto $O_r$, ver Figura 14. Como $\alpha$ e $\beta_r$ são circunferências ortogonais, então $Z_1$ e $Z_2$ são inversos em relação à $\beta_r$, isso implica que no plano $\mathbb{H}$, os pontos ideais $Z_1$ e $Z_2$ são simétricos em relação a $r$. Assim, no $\mathbb{E}_\infty$, temos
$$\begin{equation}\label{eq.col1}\overline{O_rA}\cdot\overline{O_rA'}=\overline{O_rZ_1}\cdot\overline{O_rZ_2}\end{equation}$$
A partir da igualdade $\eqref{eq.col1}$ podemos ter as seguintes proporções, $\dfrac{\overline{O_rZ_1}}{\overline{O_rA}}=\dfrac{\overline{O_rA'}}{\overline{O_rZ_2}}$ ou $\dfrac{\overline{O_rZ_2}}{\overline{O_rA}}=\dfrac{\overline{O_rA'}}{\overline{O_rZ_1}}$. Aplicando a propriedade da proporção $\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a-b}{b}=\dfrac{c-d}{d}$, temos:


$$\begin{equation}\label{eq.col2}\left\{\begin{matrix}


\dfrac{\overline{O_rZ_1}}{\overline{O_rA}}=\dfrac{\overline{O_rA'}}{\overline{O_rZ_2}}\Rightarrow\dfrac{\overline{O_rZ_1}-\overline{O_rA}}{\overline{O_rA}}=\dfrac{\overline{O_rA'}-\overline{O_rZ_2}}{\overline{O_rZ_2}}\Rightarrow\dfrac{\overline{AZ_1}}{\overline{O_rA}}=\dfrac{\overline{A'Z_2}}{\overline{O_rZ_2}}\Rightarrow\overline{O_rA}=\dfrac{\overline{AZ_1}\cdot\overline{O_rZ_2}}{\overline{A'Z_2}}\\


\\


\dfrac{\overline{O_rZ_2}}{\overline{O_rA}}=\dfrac{\overline{O_rA'}}{\overline{O_rZ_1}}\Rightarrow\dfrac{\overline{O_rA}-\overline{O_rZ_2}}{\overline{O_rA}}=\dfrac{\overline{O_rZ_1}-\overline{O_rA'}}{\overline{O_rZ_1}}\Rightarrow\dfrac{\overline{AZ_2}}{\overline{O_rA}}=\dfrac{\overline{A'Z_1}}{\overline{O_rZ_1}}\Rightarrow\overline{O_rA}=\dfrac{\overline{AZ_2}\cdot\overline{O_rZ_1}}{\overline{A'Z_1}}


\end{matrix}\right.\end{equation}$$

De $\eqref{eq.col2}$ temos


$$\begin{equation}\label{eq.col3}


\dfrac{\overline{AZ_1}\cdot\overline{O_rZ_2}}{\overline{A'Z_2}}=\dfrac{\overline{AZ_2}\cdot\overline{O_rZ_1}}{\overline{A'Z_1}}\Rightarrow\dfrac{\overline{AZ_1}\cdot\overline{A'Z_1}}{\overline{AZ_2}\cdot\overline{A'Z_2}}=\dfrac{\overline{O_rZ_1}}{\overline{O_rZ_2}}


\end{equation}$$

Figura 14: Reta $\overline{AB}$ passa no ponto $O_r$
De forma análoga ao que foi feito em $\eqref{eq.col1},\eqref{eq.col2}$ e $\eqref{eq.col3}$, podemos chegar a


$$\begin{equation}\label{eq.col4}


\dfrac{\overline{BZ_1}\cdot\overline{B'Z_1}}{\overline{BZ_2}\cdot\overline{B'Z_2}}=\dfrac{\overline{O_rZ_1}}{\overline{O_rZ_2}}


\end{equation}$$

De $\eqref{eq.col3}$ e $\eqref{eq.col4}$ temos

$$\begin{equation}\label{eq.col5} \dfrac{\overline{AZ_1}\cdot\overline{A'Z_1}}{\overline{AZ_2}\cdot\overline{A'Z_2}}=\dfrac{\overline{BZ_1}\cdot\overline{B'Z_1}}{\overline{BZ_2}\cdot\overline{B'Z_2}}\Rightarrow\dfrac{\overline{AZ_1}\cdot\overline{BZ_2}}{\overline{AZ_2}\cdot\overline{BZ_2}}=\dfrac{\overline{A'Z_1}\cdot\overline{B'Z_1}}{\overline{A'Z_2}\cdot\overline{B'Z_2}}\end{equation}$$ $$\begin{equation}\label{eq.col6}\left|\ln\dfrac{\overline{AZ_1}\cdot\overline{BZ_2}}{\overline{AZ_2}\cdot\overline{BZ_2}}\right|=\left|\ln\dfrac{\overline{A'Z_1}\cdot\overline{B'Z_1}}{\overline{A'Z_2}\cdot\overline{B'Z_2}}\right|\Rightarrow d_h(A,B)=d_h(A',B') \end{equation}$$


$\square$

Teorema 1 - A reflexão em torno de uma h-reta é uma isometria.

DEMONSTRAÇÃO
As Proposições 1 e 2 garantem que a reflexão em torno de uma h-reta satisfazem  a Definição 1(a) e Definição 1(b). No plano $\mathbb{E}_\infty$, a reflexão em torno de uma reta é uma isometria, ou seja, é uma aplicação conforme (conserva ângulos), assim, no plano $\mathbb{H}$, se o h-eixo de simetria passa no ponto $O$, a reflexão em torno da h-reta conservará ângulos. Se o h-eixo de simetria não passa por $O$ a reflexão em torno da h-reta conservará ângulos, desta forma, a reflexão em torno de uma h-reta satisfaz a Definição 1(c).
$\square$
A seguir, a Construção 1 foi feita no Geogebra. Temos que $r$ é o h-eixo de simetria e determinada pelos h-pontos $P$ e $Q$; $s$ é uma h-reta determinada pelos h-pontos $A$ e $B$; $t$ é uma h-reta determinada pelos h-pontos $B$ e $C$, $Z_1$ e $Z_2$ são pontos ideais de $s$, $A',B',C',Z'_1$ e $Z'_2$ são os simétricos de $A,B,C,Z_1$ e $Z_2$, respectivamente.
Mova os h-pontos da cor amarela e observe a reflexão em torno da h-reta $r$. 

Construção 1: Reflexão em torno da h-reta $r$



ATUALIZADO EM 13/10/2017

Vamos considerar a definição a seguir para h-circunferências

Definição 3 - Dado um h-ponto $C$ e uma h-distância $\rho$, definiremos a circunferência hiperbólica $\lambda$, ou h-circunferência, com h-centro em $C$ e h-raio $\rho$ o conjunto dos h-pontos que estão a uma h-distância $\rho$ do h-ponto $C$.

Assim, podemos verificar que a reflexão em torno de uma h-reta transforma h-circunferências em h-circunferências com o mesmo h-raio.

Proposição 3 - Seja $\lambda$ uma h-circunferência com h-centro $C$ e h-raio $\rho$ e seja $\lambda'$ o simétrico de $\lambda$ em torno de uma h-reta $r$, então $\lambda'$ será uma h-circunferências com h-raio $\rho$.

DEMONSTRAÇÃO

Sendo $C'$ o simétrico de $C$ em torno de $r$, pelo Teorema 1, temos que $C'$ é um h-ponto que está a uma distância $\rho$ de qualquer h-ponto de $\lambda'$, assim, pela Definição 3, $\lambda'$ é uma h-circunferências com h-centro em $C'$ e h-raio $\rho$.
$\square$

Numa próxima postagem, veremos como é uma h-circunferência no modelo de Disco de Ponicaré.

sexta-feira, 13 de janeiro de 2017

Arco triplo

Recordação

Encontramos em livros didáticos cálculos relacionados ao seno, cosseno e tangente com ângulos notáveis (30°, 45° e 60°), podendo encontrar o seno, cosseno e a tangente dos ângulos que são múltiplos de 15°, utilizando a fórmula das relações trigonométricas da soma e subtração de ângulos. Vamos recordar!

Considere dois ângulos, $\alpha, \beta\in [0°, 360°[$, assim
$$\begin{equation}\label{eqtan}
\mathrm{tg}(\alpha)=\dfrac{\mathrm{sen}(\alpha)}{\cos(\alpha)}
\end{equation}$$

$$\begin{equation}\label{eqrf}
\mathrm{sen}^2(\alpha)+\cos^2(\alpha)=1
\end{equation}$$

$$\begin{equation}\label{eqsenosoma}\mathrm{sen}(\alpha +\beta)=\mathrm{sen}(\alpha)\cdot\cos(\beta) +\cos(\alpha)\cdot\mathrm{sen}(\beta)\end{equation}$$

A partir da Fórmula $\ref{eqsenosoma}$ é possível demonstra que
$$\begin{equation}\label{eqsct}\left\{\begin{array}{rcl}
\mathrm{sen}(\alpha-\beta) & = & \mathrm{sen}(\alpha)\cdot\cos(\beta)-\cos(\alpha)\cdot\mathrm{sen}(\beta) \\
\cos(\alpha\pm\beta) & = & \cos(\alpha)\cdot\cos(\beta)\mp\mathrm{sen}(\alpha)\cdot\mathrm{sen}(\beta) \\
\mathrm{tg}(\alpha\pm\beta) & = & \dfrac{\mathrm{tg}(\alpha)\pm\mathrm{tg}(\beta)}{1\mp\mathrm{tg}(\alpha)\cdot\mathrm{tg}(\beta)}
\end{array}\right.\end{equation}$$

Assim, para calcular $\cos 15°$, vamos tomar $15°=45°-30°$, e utilizando a fórmula $\cos(\alpha-\beta)=\cos(\alpha)\cdot\cos(\beta)+\mathrm{sen}(\alpha)\cdot\mathrm{sen}(\beta)$, onde $\alpha=45°$ e $\beta=30°$, temos:

$$\cos 15°=\cos(45°-30°)=\cos(45°)\cdot\cos(30°)+\mathrm{sen}(45°)\cdot\mathrm{sen}(30°)$$

Como $\cos(45°)=\mathrm{sen}(45°)=\dfrac{\sqrt{2}}{2}, \cos(30°)=\dfrac{\sqrt{3}}{2}$ e $\mathrm{sen}(30°)=\dfrac{1}{2}$, temos

$$\cos 15°=\dfrac{\sqrt{2}+\sqrt{6}}{4}$$

Também podemos encontrar $\mathrm{sen}(15°)=\dfrac{\sqrt{6}-\sqrt{2}}{4}$ e $\mathrm{tg}(15°)=\dfrac{1-\dfrac{\sqrt{3}}{3}}{1+\dfrac{\sqrt{3}}{3}}=2-\sqrt{3}$ usando as Fórmulas $\eqref{eqsct}$.

Podemos calcular o seno, cosseno e a tangente de $75°$ se tomarmos $75°=45°+30°$.

$$\left\{\begin{array}{rcl}
\mathrm{sen}(75^\circ)& = & \dfrac{\sqrt{2}+\sqrt{6}}{4} \\
\cos(75^\circ)&= & \dfrac{\sqrt{6}-\sqrt{2}}{4} \\
\mathrm{tg}(75^\circ)&= & 2+\sqrt{3}
\end{array}\right.$$

Através das Fórmulas $\eqref{eqsenosoma}$ e $\eqref{eqsct}$ é possível demonstrar as fórmulas do ângulo (arco) duplo se considerarmos $2\alpha=\alpha+\alpha$.

$$\begin{equation}\label{eqad}
\left\{\begin{array}{rcl}
\mathrm{sen}(2\alpha) & = &2\cdot\mathrm{sen}(\alpha)\cdot\cos(\alpha) \\
\cos(2\alpha)& = & \cos^2(\alpha)-\mathrm{sen}^2(\alpha) \\
\mathrm{tg}(2\alpha) & = & \dfrac{2\cdot\mathrm{tg}(\alpha)} {1-\mathrm{tg}^2(\alpha)}
\end{array}\right.
\end{equation}$$

Com as Fórmulas $\eqref{eqad}$ e $\eqref{eqrf}$, é possível demonstrar as fórmulas do ângulo (arco) metade, se considerarmos $2\alpha=\beta\Rightarrow\alpha=\dfrac{\beta}{2}$

$$\begin{equation}\label{eqam}
\left\{\begin{array}{rcl}
\mathrm{sen}\left( \dfrac{\beta}{2} \right ) & = & \pm\sqrt{\dfrac{1-\cos(\beta)}{2}} \\
\cos\left( \dfrac{\beta}{2} \right )  & = &\pm\sqrt{\dfrac{1+\cos(\beta)}{2}} \\
\mathrm{tg}\left( \dfrac{\beta}{2} \right )  & = & \pm\sqrt{\dfrac{1-\cos(\beta)}{1+\cos(\beta)}}
\end{array}\right.
\end{equation}$$

Não demonstraremos as fórmulas acima, pois as demonstrações podem ser encontradas na internet e em livros didáticos de Matemática do Ensino Médio, a nossa recordação ficará limitada, apenas, em apresentar as fórmulas, pois serão necessárias para demonstrar a seguir.

Arco triplo

Vamos calcular $\mathrm{sen}(3\beta)$, para $\beta\in [0°,360°[$.

$$\mathrm{sen}(3\beta)=\mathrm{sen}(2\beta+\beta)=\mathrm{sen}(2\beta)\cdot\cos(\beta)+\cos(2\beta)\cdot\mathrm{sen}(\beta)=2\cdot\mathrm{sen}(\beta)\cdot\cos(\beta)\cdot\cos(\beta)+[\cos^2(\beta)-\mathrm{sen}^2(\beta)]\cdot\mathrm{sen}(\beta)\Rightarrow\mathrm{sen}(3\beta)=3\cdot\mathrm{sen}(\beta)\cos^2(\beta)-\mathrm{sen}^3(\beta)$$

Utilizando a relação fundamental da trigonometria (Fórmula $\eqref{eqrf}$), podemos fazer $\cos^2(\beta)=1-\mathrm{sen}^2(\beta)$
$$\mathrm{sen}(3\beta)=3\cdot\mathrm{sen}(\beta)[1-\mathrm{sen}^2(\beta)]-\mathrm{sen}^3(\beta)$$
$$\mathrm{sen}(3\beta)=3\mathrm{sen}(\beta)-4\mathrm{sen}^3(\beta)$$

Vamos determinar $\cos(3\beta)$

$\cos(3\beta)=\cos(2\beta+\beta)=\cos(2\beta)\cdot\cos(\beta)-\mathrm{sen}(2\beta)\cdot\mathrm{sen}(\beta)=[\cos^2(\beta)-\mathrm{sen}^2(\beta)])\cdot\cos(\beta)-2\cdot\mathrm{sen}(\beta)\cdot\cos(\beta)\cdot\mathrm{sen}(\beta)=\cos^3(\beta)-3\cos(\beta)\mathrm{sen}^2(\beta)=\cos^3(\beta)-3\cos(\beta)\cdot[1-\cos^2(\beta)]$

$$\cos(3\beta)=4\cos^3(\beta)-3\cos(\beta)$$

Vejamos para $\mathrm{tg}(3\beta)$, utilizando a Fórmula $\eqref{eqtan}$
$$\mathrm{tg}(3\beta)=\mathrm{tg}(2\beta+\beta)=\dfrac{\mathrm{tg}(2\beta)+\mathrm{tg}(\beta)}{1-\mathrm{tg}(2\beta)\cdot\mathrm{tg}(\beta)}=
\dfrac{\dfrac{2\cdot\mathrm{tg}(\beta)}{1-\mathrm{tg}^2(\beta)}+\mathrm{tg}(\beta)}{1-\dfrac{2\cdot\mathrm{tg}(\beta)}{1-\mathrm{tg}^2(\beta)}\cdot\mathrm{tg}(\beta)}=
\dfrac{\dfrac{2\cdot\mathrm{tg}(\beta)+\mathrm{tg}(\beta)-\mathrm{tg}^3(\beta)}{1-\mathrm{tg}^2(\beta)}}{\dfrac{1-\mathrm{tg}^2(\beta)-2\cdot\mathrm{tg}^2(\beta)}{1-\mathrm{tg}^2(\beta)}}\Rightarrow\mathrm{tg}(3\beta)=\dfrac{3\mathrm{tg}(\beta)-\mathrm{tg}^3(\beta)}{1-3\mathrm{tg}^2(\beta)}$$

Desse modo, temos as seguintes fórmulas para ângulo (arco) triplo
$$\begin{equation}\label{eqat}\left\{
\begin{array}{rcl}
\mathrm{sen}(3\beta)&=&3\mathrm{sen}(\beta)-4\mathrm{sen}^3(\beta) \\
\cos(3\beta)&=&4\cos^3(\beta)-3\cos(\beta) \\
\mathrm{tg}(3\beta)&=&\dfrac{3\mathrm{tg}(\beta)-\mathrm{tg}^3(\beta)}{1-3\mathrm{tg}^2(\beta)}
\end{array}\right.\end{equation}$$

Considerações

As fórmulas para arcos triplos, para quem gosta de Matemática, são bem divertidas de serem determinadas, mas apresentam poucas utilidades, pois podem ser substituídas pelas fórmulas já encontradas em livros didáticos do Ensino Médio. Mas vale apena pedir para os alunos as encontrar!



domingo, 8 de janeiro de 2017

Centro do inverso de uma circunferência que não passa pelo centro de inversão

Sei que o título desta postagem é tão complicado de se compreender quanto o 5º postulado de Euclides:
Se duas linhas intersectam uma terceira linha de tal forma que a soma dos ângulos internos em um lado é menor que dois ângulos retos, então as duas linhas devem se intersectar neste lado se forem estendidas indefinidamente. (Wikipedia)
O objetivo é determinar o centro de uma circunferência $\beta'$ que é o inverso de outra circunferência, chamada de $\beta$, em relação a uma circunferência $\alpha$. Veremos, a seguir, que apesar de um enunciado tão complicado de entender, o teorema é bem compreensível.

Teorema 1 - Considere as circunferências $\alpha$ com centro em $A$ e $\beta$ com centro em $B$, onde $\beta$ não passa por $A$. Sendo $\beta '$ o inverso de $\beta$ em relação a $\alpha$ e $A'$ o inverso de $A$ em relação a $\beta$, então, $A''$, inverso de $A'$ em relação a $\alpha$, é o centro da circunferência $\beta'$, ver Figura 1.
Figura 1: $A''$ é o centro da circunferência $\beta'$ inversa de $\beta$ em relação a $\alpha$
DEMONSTRAÇÃO
Veja a Figura 2, a reta $r$ passa pelos pontos $A$ e $B$, como $A'$ é o inverso de $A$ em relação a $\beta$, então $A'\in r$ (ver Definição 1 - Inversão na circunferência) e como $B$ é o centro de $\beta$, então $r$ é ortogonal a $\beta$ (ver Lema 2 - Circunferências ortogonais). A circunferência $\varepsilon$ passa pelos pontos $A$ e $A'$, como $A$ e $A'$ são inversos em relação a $\beta$, então $\varepsilon$ é ortogonal a $\beta$ (ver Teorema 1 - Circunferências ortogonais). A reta $\varepsilon '$ é inversa a $\varepsilon$ em relação a $\alpha$ (ver Teorema 1 - Inversão de circunferência em relação a outra circunferência), como $\varepsilon$ e $\beta$ são ortogonais, então $\varepsilon '$ e $\beta'$ também são ortogonais (ver Inversão de ângulos formados por retas e circunferências), então, conforme o Lema 2 - Circunferências ortogonais, $\varepsilon '$ passa pelo centro de $\beta '$. Como $r$ passa pelo centro $A$ de $\alpha$, então, o inverso de $r$, em relação a $\alpha$, é a própria reta $r$, dessa forma, $r$ também é ortogonal a $\beta'$, assim, sendo $O$ o centro de $\beta'$, então, $O\in\varepsilon'\cap r$. Como $A,A'\in\varepsilon\cap r$ e o inverso de $A$ é o ponto ideal $\Omega$ e $A'$ é $A''$, em relação a $\alpha$, então, $\{\Omega,A''\}=\varepsilon '\cap r$. Portanto, temos que $O=A''$, ou seja, $A''$ é o centro da circunferência $\beta '$.
$\square$
Figura 2: Demonstração do Teorema 1
Este teorema é válido para $\alpha\cap\beta\neq\phi$ desde que $\beta$ não passe pelo centro de $\alpha$, pois, se $\beta$ passasse por $A$, então $\beta'$ seria uma reta.

Considerações

Este teorema tem importante aplicação na Geometria Hiperbólica, especificamente, no Modelo de Disco de Poincaré. Com ele, poderemos determinar circunferências no plano hiperbólico.

Referência Bibliográfica

MUNARETTO, Ana Cristina Corrêa. Resolução do problema de Apolônio por meio de inversão: Um roteiro de estudo para a formação de Professores em Geometria. 2010. 61 f. Monografia (Especialização) - Curso de Pós-graduação em Expressão Gráfica, Departamento de Expressão Gráfica, Universidade Federal do Paraná, Curitiba, 2010.